052

053

054

Does one-shot give the best shot? Mitigating Model Inconsistency in One-shot Federated Learning

Anonymous Authors¹

Abstract

Turning the multi-round vanilla Federated Learning into one-shot FL (OFL) significantly reduces the communication burden and makes a big leap toward practical deployment. However, This work empirically and theoretically unravels that existing OFL falls into a garbage (inconsistent one-shot local models) in and garbage (degraded global model) out pitfall. The inconsistency manifests as divergent feature representations and sample predictions. This work presents a novel OFL framework FAFI that enhances the one-shot training on the client side to essentially overcome inferior local uploading. Specifically, unsupervised feature alignment and category-wise prototype learning are adopted for clients' local training to be consistent in representing local samples. On this basis, FAFI uses informativenessaware feature fusion and prototype aggregation for global inference. Extensive experiments on three datasets demonstrate the effectiveness of FAFI, which facilitates superior performance compared with 11 OFL baselines (+10.86% accuracy).

1. Introduction

As a distributed machine learning paradigm featured with privacy-preserving, Federated Learning (FL) enables multiple clients to collaboratively integrate their knowledge without exposing their local data (McMahan et al., 2017; Zeng et al., 2021; 2025; Karimireddy et al., 2020; Yurochkin et al., 2019). Basically, FL allows clients to train local models independently, collects the locally trained models for aggregation, and broadcasts the aggregated global model for iterative local training. However, such a multi-round client-server interaction process would incur a heavy communication burden (e.g., more than 250GB for a simple VGG19 model cumulatively (Zeng et al., 2024; Wu et al., 2020)) and high communication time (e.g., more than 194 hours for one-round transmission of GPT-3 (Tang et al., 2024)), criticized for being prohibitive in real-world applications (Zhang et al., 2022a; Dai et al., 2023; Chen et al., 2023; Tang et al., 2024; Liu et al., 2024).

To reduce the communication costs, one-shot Federated Learning (OFL) has emerged recently by compressing the multi-round communications of vanilla FL into just *one round* (Guha et al., 2019). In OFL, clients perform long-term local training individually based on their private data and upload these well-trained local models to the server for aggregation. In this manner, OFL is believed to be well-suited for the prevalent model market scenarios (Zhang et al., 2022a; Zeng et al., 2024), where users are willing to trade their models for next-stage knowledge fusion instead of joining into a redundant training process. In the current OFL, clients are supposed to train locally for only one time, gaining one-shot local models, while the server are expected to provide a deliberate aggregation by reforming a global model with one-shot local ones.

Existing OFL aggregation designs, building on optimizationbased methods (McMahan et al., 2017; Zeng et al., 2021; Jhunjhunwala et al., 2024; Liu et al., 2024; Dennis et al., 2021; Su et al., 2023), distillation-based methods (Li et al., 2021b; Zhou et al., 2020; Yang et al., 2023), generative methods (Yang et al., 2024b; Heinbaugh et al., 2022), and selective ensemble methods (Zhang et al., 2022a; Dai et al., 2023; Zeng et al., 2024), focus solely on the server side. Unfortunately, there is no free lunch to reduce the cost of communication. The reported performance of OFL methods has a significant gap (over 30%) compared with multi-round FL (Tang et al., 2024; Zeng et al., 2021; Gao et al., 2022).

This work identifies, for the first time, that existing OFL falls in a garbage (inferior one-shot local models) in and garbage (degraded global model) out pitfall. Vanilla FL overcomes such a pitfall by implicitly exchanging local knowledge via multi-round iterations while existing OFL lacks such a measure by reactively gathering the garbage inputs. We further unravel the root cause of such garbage inputs as two aspects of inconsistency in the face of data heterogeneity (§ 3). (1) Intra-model inconsistency. An one-

 ¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author
 (51) combalance

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

shot local model is shown to have divergent predictions for
samples under the same semantics. (2) Inter-model inconsistency. Different one-shot local models from different clients
manifest distinct parameters, causing divergent predictions
for even the same sample.

060 Intuitively, the OFL paradigm would be more effective if 061 provided with one-shot but consistent local models. How-062 ever, dealing with inconsistencies in OFL is non-trivial. 063 On one hand, we find that the heterogeneity of different 064 categories of one client's samples leads to intra-model in-065 consistency. How can we construct a model capable of 066 capturing invariant features and achieving stable predic-067 tions under such heterogeneous conditions (Challenge #1)? 068 On the other hand, we observe that better performance is 069 always accompanied by larger parameter discrepancies. A 070 more tricky challenge is how can we effectively leverage models with parameter discrepancies in a one-shot manner (Challenge #2)?

074 In view of these challenges, this work presents a novel one-075 shot Federated Learning framework, named FAFI. For Chal-076 lenge #1, we design Self-Alignment Local Training (SALT), 077 a dual-step training strategy, which leverages contrastive 078 learning to capture invariant feature representations and em-079 ploys a learnable category-wise prototype to address the prediction inconsistency by establishing semantically aligned 081 decision boundary. Working in an unsupervised manner, 082 SALT could improve the generalization of the one-shot lo-083 cal training with a tuned feature extractor and category-wise 084 templates (i.e., prototypes).

For Challenge #2, instead of directly utilizing divergent parameters, FAFI performs informativeness-aware feature 087 fusion based on local-uploaded extractors and aggregate pro-088 totypes for each category during inference, namely, Infor-089 mative Feature Fused Inference (IFFI) in the server. Specifi-090 cally, to reduce the impact of local extractors with uncertain 091 understanding of a sample, the sample's representation from 092 each extractor is compared with a noise representation of 093 the same extractor. Those with noise-proximal features are 094 assigned with attenuated attention during fusion. Subse-095 quently, the inference is made by finding the nearest aggre-096 gated prototype for the fused feature of that sample. 097

098 Our main contributions are summarized as follows:

• We empirically and theoretically reveal model inconsistencies within and across local models, which leads to poor performance for existing model merging designs in OFL.

 We present the novel one-shot Federated Learning design of client-side Self-<u>A</u>lignment Local Training and serverside Informative Feature Fused Inference (FAFI), mitigating inconsistency in OFL for enhanced inference performance without requiring additional sample or local model exchanging.

• We conduct extensive evaluations on real datasets with

various levels of data heterogeneity, accompanied by a set of ablative studies. Experimental results demonstrate the performance superiority of the proposal (10.86% accuracy improvement over 11 baselines on 3 datasets) and the indispensability of each module.

2. One-shot Federated Learning

One-shot Federated Learning (OFL) is a variant of FL that requires only one round of interaction between the clients and server to reduce the heavy communication cost. Existing OFL methods focus on designing aggregation mechanisms on the server side, which can be categorized into three categories. (1) Optimization-based methods focus on reconstructing a better global model with the parameters of local models. Traditional aggregation methods such as FedAvg (McMahan et al., 2017), Median (Yin et al., 2018), Krum (Blanchard et al., 2017), and FedCav (Zeng et al., 2021; 2025) can be directly applied in OFL, but achieve low performance. MA-Echo (Su et al., 2023) tries to get the Pareto optimum of the local clients via exploring common harmonized optima. FedFisher (Jhunjhunwala et al., 2024) and FedLPA (Liu et al., 2024) require additional Fisher information matrices for reaggregation. However, the nonlinear structure of DNNs makes it difficult to obtain a comparable global model through parameter optimization (Tang et al., 2024). Besides, directly analyzing the model parameters requires all local models to have the same architecture, whose setting is impractical in real-world heterogeneous scenarios. (2) Distillation-based methods try to introduce knowledge distillation (KD) to transfer the massive local knowledge into one global model. The local models (Guha et al., 2019; Li et al., 2021b; Diao et al., 2022) or locally distilled data (Zhou et al., 2020) are viewed as teachers and the newly constructed global model is the student. (Guha et al., 2019) firstly uses the ensemble prediction of local models as the teachers' output. FedKT (Li et al., 2021b) designs a two-tier PATE structure relying on public data to improve the ensemble of local models. To alleviate the label skews, FedOV (Diao et al., 2022) adopts open-set voting in OFL to enhance the generalization. k-FED (Dennis et al., 2021) runs a variant of Lloyd's method for k-means clustering and obtains an aggregated model through one round iteration of exchanging local cluster means. Some dataset distillation-based one-shot methods, such as FedD3 (Song et al., 2023) and FedMD (Li & Wang, 2019), transmit the locally distilled dataset rather than models to the server in a one-shot manner. However, these methods require auxiliary public data or pre-trained models which may be impractical in privacy-sensitive scenarios, such as biomedical domains. (3) Generative methods use the generative models to synthesize proxy samples for centralized training on the server side. FedCAVE (Heinbaugh et al., 2022) modifies the local learning task into training a conditional variation auto-

Figure 1. **Empirical demonstration of intra-model inconsistency.** (a) The inconsistent features extracted by the one-shot local model and (b) the inconsistent predictions of the one-shot local model on the original and flipped samples.

encoder (CAVE) and uses KD to compress the ensemble into a powerful decoder. The decoder can be used to generate training samples for the global model. FedCADO (Yang et al., 2023) adopts the popular diffusion models to get the synthetic data. FedDEO (Yang et al., 2024b) trains local descriptions which serve as the medium for conditional generation with diffusion models. However, these generative data samples may leak the privacy of the local clients. (4) Selective ensemble-based methods try to assign proportions for each local model and use them for prediction based on ensemble learning. DENSE (Zhang et al., 2022a) and Ensemble (Wang et al., 2023) equally average the predictions of all local models. Co-Boosting (Dai et al., 2023) designs a learnable weight for each local model and synthesizes data and the ensemble model mutually enhances each other progressively. IntactOFL (Zeng et al., 2024) trains a MoE for dynamic routing. However, all these methods focus on improving performance through server-side design, ignoring that the root cause of low performance in OFL is the inconsistent one-shot local models.

3. Motivation

Existing OFL aggregation methods focus on better model merging designs on the server side, which easily falls in a garbage in garbage out pitfall. In this part, we empirically and theoretically unravel the root cause of such 'garbage input' as two aspects of inconsistency (intra-model and intermodel levels) in the face of data heterogeneity.

3.1. Intra-model Inconsistency

In this part, we first investigate the intra-model inconsistency
in existing one-shot local models in heterogeneous data,
which is a common issue in FL, that the categories of one
client's training samples are totally different (Luo et al.,
2021; Li et al., 2023).

163 **Empirically Demonstration.** As shown in Figure 1a and

Figure 2. Empirical demonstration of inter-model inconsistency. (a) The inconsistent features across different one-shot local models. (b) The inconsistent parameters (measured by parameter variance) and averaged training loss under different data heterogeneity. The solid blue lines represent the parameter variance, and the dotted red lines represent the average training loss.

Figure 1b, the one-shot local model exhibits significant inconsistencies in their extracted feature (visualized by Grad-CAM (Zhou et al., 2016)) and prediction for identical samples when subjected to simple augmented transformations, such as flipping. Besides, with the increased non-IID degree (lower Dirichlet Distribution parameter *alpha*), the intra-model inconsistency (measured by the performance gap between original and flipped samples) becomes more significant. We attribute this to the heterogeneity of local data, which hinders the acquisition of a one-shot local model with good generalizability.

Theoretical Analysis. We represent the m^{th} client local model $w_m = \theta_m \cdot \Phi_m$, where Φ_m is the classifier and θ_m is the feature extractor. Existing OFL methods primarily train local models in a supervised manner, using the cross-entropy loss as the supervised loss. Considering a classification task with C categories, the loss can be represented as:

$$\mathcal{L}_{i}^{sup}(w_{m}) = \mathbb{E}_{(x,y)\in\mathcal{D}_{m}}\left[\ell_{m}^{sup}(\Phi_{m},\theta_{m};(x,y))\right] \\ = -\frac{1}{n_{m}} \sum_{j=1,y_{j}=c}^{n_{m}} \log \frac{\exp(\Phi_{m,c}^{T}\theta_{m,c}^{T}x_{j})}{\sum_{k=1}^{C}\exp(\Phi_{m,k}^{T}\theta_{m,k}^{T}x_{j})}, \quad (1)$$

where n_m is the quantity of samples in the *m*-th client. The one-shot local model should have consistent predictions for samples with the same semantics. Thus, we define the intramodel inconsistency as the performance discrepancy of the model on the original samples (x, y) and augmented samples $(A(x), y_a)$, where A is the data augmentation function. We assume that the augmented samples have significant differences from the original samples without losing semantics (Cao et al., 2024), that is, ||A(x) - x|| > 0, $y = y_a$.

Theorem 3.1. (Intra-model inconsistency. See proof in Appendix A). The intra-model inconsistency of the one-shot local model on the original samples (x, y) and augmented samples (A(x), y) can be represented as:

$$\|\Delta_{intra}\|^{2} \ge \|(p \cdot \nabla g_{a} \cdot \nabla A)^{T} (x - A(x))\|^{2} > 0, \quad (2)$$

165 where $p = \sum_{c=1}^{C} (z_c - y_c)$, z is the prediction of w_i acti-166 vated by softmax function with the augmented samples A(x),

167 ∇g_a is the gradient of the local model w_i , and ∇A is the

gradient of the data augmentation function.

Theorem 3.1 indicates that the intra-model inconsistency is 170 inevitable in the one-shot local model when trained through 171 existing OFL paradigms on heterogeneous data. Specifically, 172 it is mainly caused by three factors. (1) The performance on 173 augmented samples, which is represented by $p\nabla q_a$. (2) The 174 transformations property of the data augmentation function, 175 which is represented by ∇A . (3) The discrepancy between 176 the original samples and augmented samples, which is represented by (x - A(x)). However, all these factors are 178 larger than zero, leading to the existence of intra-model 179 inconsistency. 180

3.2. Inter-model Inconsistency

181

182

183
184
185
186
186
Notably, inconsistency exists not only within individual one-shot local models but also significantly across multiple models trained on different clients.

187 Empirically Demonstration. We visualize the features 188 extracted by different local models for the same sample 189 in Figure 2a. We observe that the features extracted by 190 different local models are significantly different. Besides, we use parameter variance $\sigma_w = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (w_i - \hat{w})^2}$ to 191 192 measure the inter-model inconsistency of one-shot local 193 models. As demonstrated in Figure 2b, we observe that inter-model inconsistency increases continuously during the 195 training process, even when the loss is close to convergence. 196 Existing research, such as 'client drift' (Gao et al., 2022; 197 Karimireddy et al., 2020), discusses the optimization direc-198 tion inconsistency in multi-round short-term local training 199 scenarios. Differently, our observation focuses on one-shot 200 long-term local training, where better performance is always 201 accompanied by larger inter-model inconsistency. 202

Theoretical Analysis. Let $z_c^j = \frac{exp(w^T x_c)}{\sum_{k=1}^{C} exp(w_k^T x_k)}$, where \mathcal{F}_c is the feature of the *c*-th class and $w = \theta \cdot \Phi$ is the oneshot local model. We denote \overline{x}_c and \overline{z} as the average input samples and prediction of all local models, respectively.

Theorem 3.2. (Inter-model inconsistency. See proof in Appendix B). For any two client u and v with the same quantity of samples $n_u = n_v$, the one-step model deviation between the two clients $\Delta_{inter} = \nabla w_u - \nabla w_v$ can be represented as:

$$\begin{aligned} & \sum_{i=1}^{213} \|\Delta_{inter}\|^2 = \|\frac{\eta}{n_u} [(n_{u,c}(1-\overline{z}_{u,c})\overline{x}_{u,c} - n_{v,c}(1-\overline{z}_{v,c})\overline{x}_{v,c}) \\ & \sum_{i=1}^{215} - (\sum_{c' \in [C_u] \setminus c} n_{u,c'} \overline{z}_{u,c'} \overline{x}_{u,c'} - \sum_{c' \in [C_v] \setminus c} n_{v,c'} \overline{z}_{v,c'} \overline{x}_{v,c'})]\|^2 > 0 \\ & \sum_{i=1}^{218} - (\sum_{c' \in [C_u] \setminus c} n_{u,c'} \overline{z}_{u,c'} \overline{x}_{u,c'} - \sum_{c' \in [C_v] \setminus c} n_{v,c'} \overline{z}_{v,c'} \overline{x}_{v,c'})]\|^2 > 0 \end{aligned}$$

where η is the learning rate, $n_{u,c}$ and $n_{v,c}$ is the sample

quantity of c-th class, c' is the negative classes except c.

Theorem 3.2 unravels that for any two clients, each local training step would cause the inconsistency of one-shot local models. With more local training steps E, the inter-model inconsistency becomes more significant, which can also be verified in Figure 2b.

In this section, we empirically and theoretically demonstrate the negative effect on one-shot local models at both intra-model levels and inter-model levels. We show that the current OFL local training strategies inevitably cause 'garbage' one-shot local models, making it challenging for server-side aggregation.

4. Method

4.1. Overview

Motivated by the analysis in § 3, we propose a novel OFL framework, namely FAFI. It consists of two components: self-alignment local training and informative feature fused inference. (1) On the client side, we train the feature extractor to enable the model to learn invariant features that can be generalized to diverse augmented samples. We also design category-wise prototype learning for distinctive prototypes, replacing the original classifier, thereby mitigating the negative impact on the prediction. (2) On the server side, we aggregate the prototypes from all clients into a global prototype. During the inference stage, we informatively fuse the features extracted by the local models to alleviate the inter-model inconsistency. The overview of FAFI is illustrated in Figure 3.

4.2. Self-Alignment Local Learning

Motivation. According to Theorem 3.1, we note that the key factor leading to intra-model inconsistency is the model's inability to handle augmented samples with the same semantics, i.e., when $\Delta g_a \gg 0$. Unfortunately, the current supervised learning paradigm can only learn fixed semantics based on labels and original input, lacking generalization to diverse augmented samples. If the model can perform well on any augmented samples, i.e., $\Delta g_a = 0$, then the intramodel inconsistency will be alleviated. Intuitively, it seems that directly adopting data augmentation could resolve this problem. However, constrained by the supervised training paradigm, as long as training with labels, $p \neq 0$, the intramodel inconsistency will inevitably occur. Besides, existing works have shown that solely adopting data augmentation can lead to the problem of complete collapse (Grill et al., 2020). To this end, we introduce self-alignment learning to ⁰, learn invariant features and an unbiased classifier that can generalize to diverse augmented samples.

Feature Alignment. To enable the model to learn more

Figure 3. An overview of the proposed FAFI. All clients perform local training and upload the trained models to the server once. (1) Through self-alignment local training, clients could upload generalizable feature extractors and category-wise prototypes. (2) The server aggregates all local prototypes into a global prototype, while in the inference stage, the server informative fuses the features extracted from the local models. It is best viewed in color.

generalized features and reduce the impact of biased data, we focus on learning invariant features related to themselves rather than features aligned with labels. We introduce a contrastive learning approach. Specifically, consider the m^{th} clients with its local dataset $\mathcal{D}_m = \{x_i, y_i\}_{i=1}^{n_m}$ and the augmented dataset $\mathcal{D}_m^a = \{A(x_i), y_i\}_{i=1}^{n_m}$, where A denotes the augmentation operator. Through self-supervised learning, we aim to learn invariant features $\mathcal{F}_{x_i} = f(\theta_m; x_i)$ and $\mathcal{F}_{A(x_i)} = f(\theta_m; A(x_i))$ that can generalize to diverse augmented samples. With similarity function sim, the self-supervised learning loss, whose objective is to minimize the discrepancy with the same semantics and different the representation to all other semantics, can be formulated as follows:

$$\mathcal{L}_{\rm ssl} = -\frac{1}{n_m} \sum_{i=1}^{n_m} \log \frac{s(\mathcal{F}_{x_i}, \mathcal{F}_{x_i^+})}{\sum_{j \in N_g(y_i)} s(\mathcal{F}_{x_i}, \mathcal{F}_{x_j})}, \quad (4)$$

where $s(\mathcal{F}_{x_i}, \mathcal{F}_{x_i^+}) = exp(cos(\mathcal{F}_{x_i}, \mathcal{F}_{x_i^+})/\tau), \tau$ denotes the temperature parameter, x_i^+ represents the set of samples that have the same label with x_i , $N_g(y_i)$ denotes the set of sample indexes that are different from y_i , and the cos function is cosine similarity.

Category-wise Prototype Learning. While contrastive learning can achieve invariant features, the classifier often displays biased behaviors and is sensitive to data heterogeneity, resulting in inconsistent predictions. Inspired by

the success of prototype learning in various heterogeneous data scenarios, the learnable contrastive prototypes replace the original classifier, thereby mitigating the negative impact of data heterogeneity on the classification (Zhang et al., 2024). Our goal is to obtain a set of representative and highly discriminative prototypes. (1) Closely align with the features to retain semantic information. (2) maintain category-wise distinctions between each prototype. Specifically, we define each client maintains a set of prototypes $\mathcal{P}_m = \{p_{m,1}, p_{m,2}, \ldots, p_{m,C}\}$, where *C* is the number of classes. During local training, the prototypes are updated to minimize the contrastive loss between the features extracted by the local model and the prototypes. The contrastive loss for the m^{th} client can be formulated as:

$$\mathcal{L}_{\text{proto}} = -\frac{1}{n_m} \sum_{i=1}^{n_m} \log \frac{\exp(\mathcal{F}_{x_i}^T p_{m,y_i}/\tau)}{\sum_{j \in [C \setminus y_i]} \exp(\mathcal{F}_{x_i}^T p_{m,j}/\tau)}, \quad (5)$$

where \mathcal{F}_{x_i} is the feature extracted by the local model for sample x_i , p_{u,y_i} is the prototype corresponding to the ground truth class y_i , and τ is the temperature parameter.

Overall Objective. Thus, the overall local training objective can be:

$$\mathcal{L}_{\text{local}} = \mathcal{L}_{\text{ssl}} + \mathcal{L}_{\text{proto}}.$$
 (6)

Notably, the objective of self-supervised local learning loss is consistent with alleviating inter-model inconsistency. And 275 the two losses in it are complementary to each other. For 276 learnable category-wise prototypes \mathcal{P}_u , the prediction of the 277 original sample and augmented sample can be formulated 278 as $\mathcal{F}_{x_i}^T \mathcal{P}_u$ and $\mathcal{F}_{A(x_i)}^T \mathcal{P}_u$, respectively. Using the cosine 279 similarity as the distance metrics, the prediction discrepancy, 280 i.e., inter-model inconsistency, can be formulated as:

281 282

283

284

285 286

287

297

324

325

327

328

329

$$\Delta_{intra} = -cos(\underbrace{\mathcal{F}_{x_i}^T \mathcal{P}_m}_{\mathcal{L}_{\text{proto}} \propto}, \underbrace{\mathcal{F}_{A(x_i)}^T \mathcal{P}_m}_{\mathcal{L}_{\text{proto}} \propto})$$
(7)

$$=-\underbrace{cos(\mathcal{F}_{x_i},\mathcal{F}_{A(x_i)})}_{\mathcal{L}_{ssl}\propto}\mathcal{P}_m,$$

we can observe that the optimization objective of \mathcal{L}_{proto} in 289 Eq.(5) is to learn a discriminative representation, ensuring 290 that the samples with the same semantics have similar pre-291 dictions, which aligns with the goal of reducing intra-model 292 inconsistency (first line in Eq.(7)). Simultaneously, the ob-293 jective of \mathcal{L}_{ssl} in Eq.(4) is to enable the local model to learn 294 informative and consistent features (second line in Eq.(7)), 295 which also help to reduce intra-model inconsistency. 296

298 4.3. Informative Feature Fused Inference

299 Motivation. The aforementioned theoretical analysis Theo-300 rem 3.2 and recent studies indicate that inter-model incon-301 sistency caused by data heterogeneity is inevitable. The root 302 cause of the low performance due to inter-model inconsis-303 tency lies in the inability to reconstruct a well-performing 304 global model through parameter-level aggregation from sig-305 nificantly different local models. Inspired by the Mixture 306 of Experts (MoE) (Zeng et al., 2024; Zhu et al., 2024b), 307 an architecture that enhances the inference capability by 308 leveraging the outputs of expert models. Instead of aggre-309 gating model parameters, we fuse the features extracted by 310 inconsistent local models to integrate semantics, thereby 311 mitigating the negative impact of data heterogeneity and 312 enhancing the inference capability. Additionally, we also 313 note that the features extracted by different models exhibit 314 discrepancies during the fusion process. To address this, we 315 design an attention-based feature fusion mechanism. 316

Feature Fusion. Specifically, let \mathcal{F}_m be the feature extracted by the *u*-th client's local model. To fuse the features from different clients, we design a mechanism to informatively aggregate the features. The features with less information which is similar to noise should be down-weighted, while the features with more information should be upweighted. Thus, we define the rescaling factor α_u as:

$$\alpha_m = 1 - \cos(\mathcal{F}_m, \mathcal{F}_m^{\mathcal{N}(\mu,\sigma)}),\tag{8}$$

where $sim(\cdot, \cdot)$ is the cosine similarity, and $\mathcal{F}_u^{\mathcal{N}(\mu,\sigma)}$ is a feature extracted by a Gaussian distribution with mean μ and standard deviation σ .

Next, we aggregate the features from different clients using the weighted average:

$$\mathcal{F}_{\text{fused}} = \sum_{m}^{M} \frac{\alpha_{m}}{\sum_{v}^{M} \alpha_{v}} \mathcal{F}_{m}, \qquad (9)$$

where M is the number of clients.

Inference with Global Prototype. After obtaining the fused feature $\mathcal{F}_{\text{fused}}$, we use the similarity between the fused feature and the discriminative global prototype for prediction. Specifically, let $\mathcal{P}_g = \frac{1}{M} \sum_{m=1}^{M} \mathcal{P}_m$ be the global prototype aggregated from the clients' learnable prototypes. The prediction \hat{y} can be formulated as:

$$\hat{y} = \arg\max_{c \in [C]} \cos(\mathcal{F}_{\text{fused}}, \mathcal{P}_{g,c}), \tag{10}$$

where $cos(\cdot, \cdot)$ is a the cosine similarity. This approach leverages the fused features and the discriminative power of the global prototype to make accurate predictions. The detail process is presented in Appendix C Algorithm 1.

4.4. Discussion

Privacy Security. Transmitting prototypes from clients to the server instead of classifier is a common practice in FL (Tan et al., 2022; Mu et al., 2023) that does not compromise privacy security, as prototypes are statistical-level information of category that does not contain the privacy of individual samples (Huang et al., 2023; Wan et al., 2024). Besides, category-wise prototype learning aims to capture the common abstract features of the same category, thereby reducing the exposure risk for individual samples.

Comparison with Analogous Methods.

• **Prototypes in FL.** Existing prototype-based methods, such as FedProto (Tan et al., 2022) and FedTGP (Zhang et al., 2024), rely on **multi-round interactions** to obtain a representative global prototype, which limits their applicability in one-shot FL scenarios. In contrast, FAFI can achieve a semantically aligned global prototype with just one-shot aggregation.

• Model Merging in LLMs. Some studies consider that the existing aggregation process in OFL is akin to model merging and try to improve the performance by either using weighted-based model merging (Tao et al., 2024; Yang et al., 2024a), subspace-based merging (Zhu et al., 2024a; Yadav et al., 2024), or routing-based merging (Zeng et al., 2024). However, (1) all these methods still suffer from the 'garbage in, garbage out' pitfall, as they only focus on server-side merging and overlook the negative effect caused by inconsistent pre-trained models; (2) All these methods lack privacy-preserving properties, as they require source data or additional information that is highly relevant for post-calibration after merging. In contrast, FAFI does not require the source data or any other auxiliary information. Limitations. Our framework exhibits limitations in domain
shift and multi-task scenarios where static class representations fail to adapt to conflicting feature distributions or
divergent task objectives. This limitation is shared by other
prototype-based methods. (Tan et al., 2022; Huang et al.,
2023; Zhang et al., 2024; Mu et al., 2023).

5. Experiments

339 5.1. Experimental Setup

Datasets. Adhere to the previous work (Tan et al., 2022; Huang et al., 2023; Zeng et al., 2024; Zhang et al., 2022a; Tang et al., 2024), we evaluate the efficacy on three widely used benchmarks:

• **CIFAR-10** contsins 50k, 10k images for training and testing. Images are in size 32×32 with 10 classes.

CIFAR-100 have the same format and size as CIFAR-10,
but with 100 classes.

Tiny-Imagenet contains 100k, 10k images for training
 and testing. Images are in size 64×64 with 200 classes.

Data Heterogeneity. Considering the heterogeneous environment, we partitioned the dataset through a widely-used non-IID partition method, namely Dirichlet Sampling, in which the coefficient α refers to the non-IID degree. A small α represents a biased distribution. Following the setting in (Zeng et al., 2024; Zhang et al., 2022a), we set $\alpha \in \{0.05, 0.1, 0.3, 0.5\}$, respectively. More details are shown in Appendix E.

Baselines. We compare with several OFL methods, catego rized into three types:

• **Parameter optimization-based**: one-shot FedAvg (O-FedAvg) (McMahan et al., 2017; Guha et al., 2019) [arXiv'19], MA-Echo (Su et al., 2023) [NN'23], and Fed-Fisher (Jhunjhunwala et al., 2024) [AISTATS'24].

Distillation-based: DENSE (Zhang et al., 2022a)
 [NeurIPS'22], FedDF (Lin et al., 2020) [NeurIPS'20], F-ADI (Yin et al., 2020) [CVPR'20], and F-DAFL (Chen et al., 2019) [ICCV'19].

Selective ensemble learning-based: directly Ensemble, Co-Boosting (Dai et al., 2023) [ICLR'23], IntactOFL (Zeng et al., 2024) [MM'24].

Besides, we also consider some iterative methods, i.e., FuseFL (Tang et al., 2024) [NeurIPS'24], which improves the performance through iteratively sharing intermediate features. To ensure fair comparisons, we neglect some methods that require additional information, such as FedKT (Li et al., 2021b), FedOV (Diao et al., 2022), and FedGen (Zhu et al., 2021).

381 **5.2. Effectiveness**

380

Table 1 illustrates the effectiveness of our proposed FAFI
 compared with popular OFL methods in non-IID settings.

Figure 4. **Test Accuracy v.s. Communication Cost** on CIFAR-10. FAFI is more efficient than all other baselines, while achieving higher performance without large communication overhead. See details in § 5.4.

(1) It clearly depicts that our method achieves a significant performance improvement over the baselines on all datasets and all settings (10.86% averaged). (2) Notably, in some extreme cases such as $\alpha = \{0.05, 0.1\}$ on Tiny-Imagenet, our method exhibits a more significant performance advantage (17.71% averaged) over the baseline algorithms. (3) Besides, the FuseFL which iteratively shares intermediate features between clients can achieve the second-best performance in some settings. We attribute this to the fact that the FuseFL mitigates the feature inconsistencies by sharing intermediate features, leaving intra-model inconsistency unsolved. In summary, the FAFI is effective in various data heterogeneous scenarios and achieves competitive performance over all baselines.

5.3. Scalability

We assess the scalability of FAFI by varying the number of clients m. As presented in Table 2, FAFI consistently achieves the best performance across different client scales. As suggested in (Lian et al., 2017), the server can become a major bottleneck while the number of clients increases. We also reach a similar conclusion, with more clients m, the performance decreases, which is consistent with (Zhang et al., 2022a; Dai et al., 2023; Lian et al., 2017; Zeng et al., 2024). In summary, the FAFI is scalable across diverse distributed networks of varying sizes.

5.4. Efficiency

We compare the accuracy and communication cost of FAFI to existing OFL methods and multi-round FL baselines in Figure 4. We select six representative multi-round FL methods, more details are shown in Appendix E. Note that FAFI achieves higher performance than all other baselines, while incurring a lower communication overhead. Notably, with

Table 1. Comparison with the state-of-the-art OFL methods: in CIFAR-10, CIFAR-100, and Tiny-ImageNe scenarios with skew
ratio $\alpha \in \{0.05, 0.1, 0.3, 0.5\}$. Underline/bold fonts highlight the best baseline/the proposed FAFI. Δ represents the performance
improvement compared with the best baseline. We report the 5 trials' results in the form of mean±variance. See details in § 5.2.

0	mprovenie	in compa	cu with th	ie best buse		poir the 5	111115 1050	into in the i	orm or me	un_ varian		uns m 5 5.	2.
0	Methods		CIFA	AR-10			CIFA	R-100			Tiny-In	nageNet	
9	wiethous	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$
0	MA-Echo	$36.77_{\pm 0.91}$	$51.23_{\pm 0.28}$	$60.14_{\pm 0.21}$	$64.21_{\pm 0.23}$	$19.54_{\pm 0.45}$	$29.11_{\pm 0.26}$	$37.77_{\pm 0.24}$	$41.94_{\pm 0.21}$	15.46 ± 0.66	$22.23_{\pm 0.56}$	23.46 ± 0.19	$28.21_{\pm 0.42}$
	O-FedAvg	$12.13_{\pm 2.11}$	$17.43 _{\pm 0.51}$	$28.07 _{\pm 0.89}$	$35.42 {\scriptstyle \pm 0.67}$	$4.77_{\pm 0.21}$	$6.45{\scriptstyle \pm 0.71}$	$10.67 _{\pm 0.31}$	$12.13 _{\pm 0.05 }$	5.67 ± 0.45	$8.31 {\scriptstyle \pm 0.21}$	$13.61 {\scriptstyle \pm 0.10}$	$13.71 {\scriptstyle \pm 0.16}$
)	FedFisher	$40.03_{\pm 1.11}$	$47.01 _{\pm 1.81 }$	$49.33_{\pm 1.52}$	$50.34_{\pm 1.32}$	$16.56_{\pm 2.67}$	$18.98_{\pm 2.09}$	$27.24_{\pm 1.92}$	$31.44_{\pm 1.87}$	$15.65_{\pm 1.54}$	$17.89_{\pm 1.46}$	$19.54_{\pm 1.31}$	$20.77_{\pm 1.15}$
	FedDF	$35.53 {\scriptstyle \pm 0.67}$	$41.58 {\scriptstyle \pm 0.80}$	$44.78 _{\pm 0.60}$	$54.58 {\scriptstyle \pm 0.73}$	$15.07 {\scriptstyle \pm 0.74}$	$27.17 {\scriptstyle \pm 0.55}$	$31.23 {\scriptstyle \pm 0.79}$	$35.39 {\scriptstyle \pm 0.47}$	11.45 ± 0.40	$16.32 {\scriptstyle \pm 0.33}$	$17.79 _{\pm 0.57 }$	$27.55 {\scriptstyle \pm 0.66}$
5	F-ADI	$35.93_{\pm 1.56}$	$48.35_{\pm 1.23}$	$52.66_{\pm 1.44}$	$58.78_{\pm 1.67}$	$14.65 _{\pm 0.98}$	$28.13_{\pm 1.24}$	$33.18_{\pm 0.67}$	$39.44_{\pm 1.11}$	$13.92_{\pm 1.99}$	$19.00 {\scriptstyle \pm 1.78}$	$26.01 _{\pm 1.44}$	$29.98_{\pm 1.34}$
	F-DAFL	$38.32_{\pm 1.40}$	$46.34_{\pm 1.12}$	$54.03 {\scriptstyle \pm 1.71}$	$59.09 {\scriptstyle \pm 2.23}$	$16.31 {\scriptstyle \pm 0.33}$	$26.80 {\scriptstyle \pm 1.33}$	$34.89 {\scriptstyle \pm 1.45}$	$37.88 {\scriptstyle \pm 1.34}$	15.12 ± 1.34	$19.01 {\scriptstyle \pm 1.11}$	$23.78 {\scriptstyle \pm 1.23}$	$27.98 {\scriptstyle \pm 1.10}$
	DENSE	$38.37_{\pm 1.08}$	$50.26_{\pm 0.24}$	$59.76_{\pm 0.45}$	$62.19_{\pm 0.12}$	$18.37_{\pm 2.43}$	$32.03 _{\pm 0.44}$	$37.33_{\pm 0.48}$	$38.84_{\pm 0.39}$	$18.77_{\pm 0.67}$	$22.25_{\pm 0.33}$	$28.14_{\pm 0.34}$	$32.34_{\pm 0.32}$
	Ensemble	$41.36 {\scriptstyle \pm 0.67}$	$45.43 {\scriptstyle \pm 0.32}$	$62.18 {\scriptstyle \pm 0.34}$	$61.61 {\scriptstyle \pm 0.23}$	$20.46 {\scriptstyle \pm 0.62}$	$26.23 {\scriptstyle \pm 0.55}$	$38.01 {\scriptstyle \pm 0.67}$	$41.61 {\scriptstyle \pm 0.77}$	13.28 ± 0.67	$15.38 {\scriptstyle \pm 0.23}$	$17.53 {\scriptstyle \pm 0.31}$	$28.50 {\scriptstyle \pm 0.46}$
	Co-Boosting	$39.20_{\pm 0.81}$	$58.49_{\pm 1.24}$	$67.21_{\pm 1.76}$	$70.24_{\pm 2.34}$	$20.19_{\pm 1.44}$	$27.59_{\pm 1.35}$	$39.30_{\pm 1.30}$	$42.67_{\pm 1.40}$	$19.00_{\pm 1.45}$	$21.90 _{\pm 1.20}$	$29.24_{\pm 1.32}$	$30.78_{\pm 2.01}$
	FuseFL	$\underline{54.42}_{\pm 0.41}$	$\underline{73.79_{\pm0.34}}$	84.58 ± 0.91	$84.34_{\pm 0.88}$	$\underline{29.12_{\pm 0.23}}$	$36.86 {\scriptstyle \pm 0.38}$	$45.12 {\scriptstyle \pm 0.51}$	$49.30 {\scriptstyle \pm 0.32}$	22.15 ± 2.11	29.28 ± 2.04	33.04 ± 1.79	$34.34_{\pm 1.81}$
	IntactOFL	48.22 ± 0.43	$61.13_{\pm 0.63}$	$70.21_{\pm 0.60}$	$79.93_{\pm 0.23}$	$27.99 _{\pm 0.67}$	$39.15_{\pm 0.46}$	$41.86_{\pm 0.60}$	$46.78_{\pm 0.78}$	20.45 ± 0.34	$28.43 _{\pm 0.17}$	$30.15_{\pm 0.12}$	$35.09_{\pm 0.14}$
)	Ours	71.84 ±1.53	77.83 _{±1.32}	84.76 ±0.46	88.74 ±0.11	31.02 ±1.17	45.48 ±1.01	56.65 ±0.91	61.07 ±0.55	36.96 ±0.92	43.62 ±0.77	53.32±0.50	$\textbf{56.48}_{\pm 0.32}$
)	Δ	↑ 17.42	$\uparrow 6.04$	$\uparrow 0.18$	$\uparrow 4.40$	↑ 1.90	↑ 6.33	↑ 11.53	↑ 11.77	↑ 14.81	↑ 14.34	↑ 20.28	↑ 21.39

Table 2. Scalability under different number of clients, m = $\{5, 10, 25, 50, 100\}$ on CIFAR-10 with $\alpha = 0.5$. See in § 5.3.

Mathada		Client scales m						
Methods	5	10	25	50	100			
MA-Echo	64.21	52.64	48.36	45.35	38.54			

Ours	88.74	86.96	85.25	81.32	75.37
IntactOFL	79.93	69.11	64.32	59.45	53.21
FuseFL	84.34	78.28	62.12	42.18	37.11
Co-Boosting	55.34	51.11	49.32	44.56	42.45
Ensemble	61.61	60.44	58.44	52.51	45.72
DENSE	62.19	54.67	49.32	48.67	43.34
F-DAFL	58.59	45.45	32.88	29.98	28.91
F-ADI	59.34	46.33	31.83	27.66	24.89
FedDF	54.58	48.88	35.44	29.91	25.66
FedFisher	50.34	45.67	34.66	29.09	28.89
O-FedAvg	35.42	32.09	28.03	28.24	27.14
MA-ECHO	04.21	52.04	46.50	45.55	56.54

414 415 416

417

418

419 420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

385 386 387

401 402

403

404

405

406

407

408

409

410 411

412

413

Table 3. Ablation Study on Key Components of FAFI on CIFAR-10 with skew ratio $\alpha \in \{0.05, 0.1, 0.3, 0.5\}$. See details in § 5.5.

SALT	IFFI	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$
		12.13	17.43	28.07	35.42
1		53.12	55.76	58.95	61.67
	1	55.23	63.75	68.49	70.44
1	1	71.84	77.83	84.76	88.74

more communication budget, multi-round FL methods can achieve better performance (Figure 4 only presents the first 80 rounds results of multi-round FL methods). However, as these methods get convergent, the performance improvement diminishes, and communication costs become prohibitive. In summary, FAFI achieves a better efficiency compared with existing FL methods (both OFL and multi-round FL), making it more suitable for practical deployment.

5.5. Ablation Study

Key Components. For thoroughly analyzing the efficacy of each module, we perform an ablation study to investigate the effectiveness of Self-Alignment Local Training (SALT) and

Figure 5. Analysis on hyper-parameter. Performance with hyperparameter τ and batch size on four data heterogeneity $\alpha \in$ $\{0.05, 0.1, 0.3, 0.5\}$. See details in § 5.5.

Informative Feature Fused Inference (IFFI). The results in Table 3 show that the two modules contribute significantly to the performance improvement of FAFI. The combination of the two modules achieves the best performance, underscoring the effectiveness of our proposed method.

Hyper-parameter. We first investigate the τ and batch size in self-alignment local learning. For τ , we note that its impact on performance when $\tau \in [0.1, 1]$. When $\tau =$ 0.01, it would have a certain degree of degradation. For batch size, we note that a larger batch size would benefit the performance while requiring more resources. With the minimum batch size, the performance is still competitive.

6. Conclusion

In this paper, we propose a novel OFL framework, namely, FAFI to mitigate the model inconsistency. We first empirically and theoretically present the inconsistencies at both intra-model and inter-model levels in existing OFL methods. To this end, we propose Self-Alignment Local Training for semantic aligned feature extractors and distinctive prototypes and use Informative Feature Fused Inference to fuse the features for inference. Extensive experiments on three datasets show the superiority of our methods.

440 Impact Statements

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.

References

441

442

443

444

445

446

447

448

449

450

451

452

- Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent. In Proc. of the Advances in Neural Information Processing Systems (NeurIPS), pp. 118–128, 2017.
- Cao, C., Zhou, F., Dai, Y., Wang, J., and Zhang, K. A survey of mix-based data augmentation: Taxonomy, methods, applications, and explainability. *ACM Computing Surveys*, 57(2):1–38, 2024.
- 459 Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
 460 and Joulin, A. Unsupervised learning of visual features by
 461 contrasting cluster assignments. In *Proc. of the Advances*462 *in Neural Information Processing Systems (NeurIPS)*,
 463 volume 33, pp. 9912–9924, 2020.
- Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B.,
 Xu, C., Xu, C., and Tian, Q. Data-free learning of student networks. In *Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 3514–3522, 2019.
- Chen, J., Zhu, J., and Zheng, Q. Towards fast and stable federated learning: Confronting heterogeneity via knowledge anchor. In *Proc. of ACM International Conference on Multimedia (ACM MM)*, pp. 8697–8706, 2023.
- Chongjian, G., Wang, J., Tong, Z., Chen, S., Song, Y., and Luo, P. Soft neighbors are positive supporters in contrastive visual representation learning. In *Proc. of the International Conference on Learning Representations (ICLR)*, pp. 1–16, 2023.
- 481 Dai, R., Zhang, Y., Li, A., Liu, T., Yang, X., and Han, B.
 482 Enhancing one-shot federated learning through data and
 483 ensemble co-boosting. In *Proc. of International Con-*484 *ference on Learning Representations (ICLR)*, pp. 1–21,
 485 2023.
- Dennis, D. K., Li, T., and Smith, V. Heterogeneity for the
 win: One-shot federated clustering. In *Proc. of International Conference on Machine Learning (ICML)*, pp. 2611–2620. PMLR, 2021.
- 491
 492
 493
 493
 494
 494
 495
 494
 496
 496
 497
 498
 498
 499
 499
 499
 499
 490
 490
 490
 490
 491
 491
 491
 492
 493
 494
 494
 494
 494
 494
 494
 495
 494
 496
 496
 496
 497
 498
 498
 498
 499
 499
 499
 499
 490
 490
 490
 490
 490
 490
 491
 491
 491
 492
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494

- Gao, L., Fu, H., Li, L., Chen, Y., Xu, M., and Xu, C.-Z. Feddc: Federated learning with non-iid data via local drift decoupling and correction. In *Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10112–10121, 2022.
- Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. Bootstrap your own latent-a new approach to self-supervised learning. In *Proc. of Advances in Neural information Processing Sys*tems (NeurIPS), volume 33, pp. 21271–21284, 2020.
- Guha, N., Talwalkar, A., and Smith, V. One-shot federated learning. *arXiv preprint arXiv:1902.11175*, 2019.
- Heinbaugh, C. E., Luz-Ricca, E., and Shao, H. Data-free one-shot federated learning under very high statistical heterogeneity. In *Proc. of International Conference on Learning Representations (ICLR)*, pp. 1–17, 2022.
- Huang, W., Ye, M., Shi, Z., Li, H., and Du, B. Rethinking federated learning with domain shift: A prototype view. In *Proc. of the Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16312–16322. IEEE, 2023.
- Jhunjhunwala, D., Wang, S., and Joshi, G. Fedfisher: Leveraging fisher information for one-shot federated learning. In Proc. of the International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1612–1620. PMLR, 2024.
- Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. SCAFFOLD: Stochastic controlled averaging for federated learning. In *Proc. of International Conference on Machine Learning (ICML)*, pp. 5132–5143. PMLR, 2020.
- Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., and Krishnan, D. Supervised contrastive learning. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, pp. 18661– 18673, 2020.
- Li, D. and Wang, J. Fedmd: Heterogenous federated learning via model distillation. *arXiv preprint arXiv:1910.03581*, 2019.
- Li, J., Zhou, P., Xiong, C., and Hoi, S. C. Prototypical contrastive learning of unsupervised representations (2020).
 In *Proc. of the International Conference on Learning Representations (ICLR)*, pp. 4–8, 2021a.
- Li, Q., He, B., and Song, D. Practical one-shot federated learning for cross-silo setting. In *Proc. of the International Joint Conference on Artificial Intelligence (IJCAI)*, 2021b.

- Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
 and Smith, V. Federated optimization in heterogeneous
 networks. *Proc. of Machine learning and systems (ML-*Sys), 2:429–450, 2020.
- Li, Z., Shang, X., He, R., Lin, T., and Wu, C. No fear
 of classifier biases: Neural collapse inspired federated
 learning with synthetic and fixed classifier. In *Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 5319–5329, 2023.

- Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017.
- Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble distillation for robust model fusion in federated learning. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 2351–2363, 2020.
- Liu, X., Liu, L., Ye, F., Shen, Y., Li, X., Jiang, L., and Li,
 J. Fedlpa: One-shot federated learning with layer-wise
 posterior aggregation. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1–39,
 2024.
- Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., and Feng, J.
 No fear of heterogeneity: Classifier calibration for federated learning with non-iid data. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pp. 5972–5984, 2021.
- McMahan, B., Moore, E., Ramage, D., Hampson, S., and
 y Arcas, B. A. Communication-efficient learning of deep
 networks from decentralized data. In *Proc. of Interna- tional Conference on Artificial Intelligence and Statis- tics (AISTATS)*, pp. 1273–1282. PMLR, 2017.
- Mu, X., Shen, Y., Cheng, K., Geng, X., Fu, J., Zhang, T., and
 Zhang, Z. Fedproc: Prototypical contrastive federated
 learning on non-iid data. *Future Generation Computer Systems*, 143:93–104, 2023.
- Oord, A. v. d., Li, Y., and Vinyals, O. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
- Song, R., Liu, D., Chen, D. Z., Festag, A., Trinitis, C.,
 Schulz, M., and Knoll, A. Federated learning via decentralized dataset distillation in resource-constrained edge
 environments. In *Proc. of the International Joint Conference on Neural Networks (IJCNN)*, pp. 1–10. IEEE, 2023.

- Su, S., Li, B., and Xue, X. One-shot federated learning without server-side training. *Neural Networks*, 164:203– 215, 2023.
- Tan, Y., Long, G., Liu, L., Zhou, T., Lu, Q., Jiang, J., and Zhang, C. Fedproto: Federated prototype learning across heterogeneous clients. In *Proc. of the AAAI Conference on Artificial Intelligence (AAAI)*, volume 36, pp. 8432– 8440, 2022.
- Tang, Z., Zhang, Y., Dong, P., ming Cheung, Y., Zhou, A. C., Han, B., and Chu, X. Fusefl: One-shot federated learning through the lens of causality with progressive model fusion. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1–37, 2024.
- Tao, Z., Mason, I., Kulkarni, S., and Boix, X. Task arithmetic through the lens of one-shot federated learning. arXiv preprint arXiv:2411.18607, 2024.
- Wan, G., Huang, W., and Ye, M. Federated graph learning under domain shift with generalizable prototypes. In *Proc.* of the AAAI Conference on Artificial Intelligence (AAAI), volume 38, pp. 15429–15437, 2024.
- Wang, N., Feng, W., Duan, M., Liu, F., Ng, S.-K., et al. Data-free diversity-based ensemble selection for one-shot federated learning. *Transactions on Machine Learning Research*, 2023.
- Wu, X., Yao, X., and Wang, C.-L. Fedscr: Structure-based communication reduction for federated learning. *IEEE Transactions on Parallel and Distributed Systems (TPDS)*, 32(7):1565–1577, 2020.
- Yadav, P., Tam, D., Choshen, L., Raffel, C. A., and Bansal, M. Ties-merging: Resolving interference when merging models. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 36, 2024.
- Yang, E., Shen, L., Guo, G., Wang, X., Cao, X., Zhang, J., and Tao, D. Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities. *arXiv* preprint arXiv:2408.07666, 2024a.
- Yang, M., Su, S., Li, B., and Xue, X. One-shot federated learning with classifier-guided diffusion models. arXiv preprint arXiv:2311.08870, 2023.
- Yang, M., Su, S., Li, B., and Xue, X. Feddeo: Descriptionenhanced one-shot federated learning with diffusion models. In *Proc. of the ACM International Conference on Multimedia (ACM MM)*, pp. 6666–6675, 2024b.
- Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantinerobust distributed learning: Towards optimal statistical rates. In *Proc. of International Conference on Machine Learning (ICML)*, pp. 5650–5659. PMLR, 2018.

- Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya, A.,
 Hoiem, D., Jha, N. K., and Kautz, J. Dreaming to distill:
 Data-free knowledge transfer via deepinversion. In *Proc. of Computer Vision and Pattern Recognition (CVPR)*, pp.
 8715–8724, 2020.
- Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
 Hoang, N., and Khazaeni, Y. Bayesian nonparametric
 federated learning of neural networks. In *Proc. of International Conference on Machine Learning (ICML)*, pp.
 7252–7261, 2019.
- Zeng, H., Zhou, T., Guo, Y., Cai, Z., and Liu, F. Fedcav: contribution-aware model aggregation on distributed heterogeneous data in federated learning. In *Proc. of International Conference on Parallel Processing (ICPP)*, pp. 1–10, 2021.
- Zeng, H., Xu, M., Zhou, T., Wu, X., Kang, J., Cai, Z., and
 Niyato, D. One-shot-but-not-degraded federated learning. In *Proc. of the ACM International Conference on Multimedia (ACM MM)*, pp. 11070–11079, 2024.
- Zeng, H., Zhou, T., Guo, Y., Cai, Z., and Liu, F. Towards
 value-sensitive and poisoning-proof model aggregation
 for federated learning on heterogeneous data. *Journal of Parallel and Distributed Computing (JPDC)*, 196:104994,
 2025.
- Zhang, J., Chen, C., Li, B., Lyu, L., Wu, S., Ding, S., Shen,
 C., and Wu, C. Dense: Data-free one-shot federated learning. In *Proc. of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp. 21414– 21428, 2022a.
- Zhang, J., Li, Z., Li, B., Xu, J., Wu, S., Ding, S., and Wu, C.
 Federated learning with label distribution skew via logits calibration. In *Proc. of the International Conference on Machine Learning (ICML)*, volume 162, pp. 26311–26329, 17–23 Jul 2022b.
- Zhang, J., Liu, Y., Hua, Y., and Cao, J. Fedtgp: Trainable global prototypes with adaptive-margin-enhanced contrastive learning for data and model heterogeneity in federated learning. In *Proc. of the AAAI Conference on Artificial Intelligence (AAAI)*, volume 38, pp. 16768–16776, 2024.
- Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
 A. Learning deep features for discriminative localization.
 In *Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2921–2929, 2016.
- Zhou, T., Zhang, J., and Tsang, D. H. K. Fedfa: Federated learning with feature anchors to align features and classifiers for heterogeneous data. *IEEE Transactions on Mobile Computing (TMC)*, 23(6):6731–6742, 2024.

- Zhou, Y., Pu, G., Ma, X., Li, X., and Wu, D. Distilled oneshot federated learning. *arXiv preprint arXiv:2009.07999*, 2020.
- Zhu, D., Sun, Z., Li, Z., Shen, T., Yan, K., Ding, S., Kuang, K., and Wu, C. Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. In *Proc.* of the International Conference on Learning Representations (ICLR), 2024a.
- Zhu, T., Qu, X., Dong, D., Ruan, J., Tong, J., He, C., and Cheng, Y. Llama-moe: Building mixture-of-experts from llama with continual pre-training. In *Proc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 15913–15923, 2024b.
- Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In *Proc. of International Conference on Machine Learning (ICML)*, pp. 12878–12889. PMLR, 2021.

A. Proof of Theorem 3.1

We first provide a lemma to demonstrate the prediction discrepancy of the one-shot local model on original sample (x, y) and augmented samples A(x), y as follows.

Lemma A.1. (*Prediction discrepancy*). For any sample (x, y) and its augmented sample (A(x), y), the prediction discrepancy can be represented as:

$$\Delta_{intra} \ge \left(p \cdot \nabla g_a \cdot \nabla A\right)^T (x - A(x)),\tag{11}$$

where $p = \sum_{c=1}^{C} (z_c - y_c)$, z is the prediction of w_i activated by softmax function with the augmented samples A(x), ∇g_a is the gradient of the local model w_i , and ∇A is the gradient of the data augmentation function.

We provide the proof of Lemma A.1 as follows:

Proof. We derive the performance discrepancy of the local model on the original samples (x, y) and augmented samples (A(x), y) as follows.

$$\Delta_{intra} = \mathcal{L}_i^{sup}(w_i; (x, y)) - \mathcal{L}_i^{sup}(w_i; (A(x), y)).$$
(12)

We use the Talyer expansion to approximate the loss function on the original samples (x, y) as follows:

$$\mathcal{L}_{i}^{sup}(w_{i};(x,y)) \approx \mathcal{L}_{i}^{sup}(w_{i};(A(x),y)) + \nabla \mathcal{L}_{i}^{sup}(w_{i};(A(x),y))^{T}(x-A(x)).$$
(13)

We can further simplify Equ. 12 as follows:

$$\Delta_{intra} \ge \nabla \mathcal{L}_i^{sup}(w_i; (A(x), y))^T (x - A(x)).$$
(14)

If we adopt cross-entropy loss as the supervised loss $\mathcal{L}(z, y) = -\sum_{c=1}^{C} y_k \log z_k$, where z is the softmax prediction, y is the ground truth label, we have:

$$\Delta_{intra} \ge \left(\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial A} \frac{\partial A}{\partial x}\right)^T (x - A(x))$$

$$\ge \left(\sum_{c=1}^C (z_c - y_c) \frac{\partial z}{\partial A} \nabla A\right)^T (x - A(x)).$$
(15)

Note that $\frac{\partial z}{\partial A}$ is the gradient ∇g of local model w_i with respect to the augmented data A(x), and $\nabla A = \frac{\partial A}{\partial x}$ is the transformations property of the data augmentation function A. Since $z_c = \frac{exp(\Phi_{i,c}^T \theta_{i,c}^T A(x_j))}{\sum_{k=1}^C \exp(\Phi_{i,k}^T \theta_{i,k}^T A(x_j))}$ is the output of a softmax function, $z_c \in (0, 1)$, y is the one-shot encoded vector, $y_c \in \{0, 1\}$, thus, $|z_c - y_c| > 0$. Finally, we finish the proof:

$$\Delta_{intra} \ge \left(p \cdot \nabla g_a \cdot \nabla A\right)^T (x - A(x)),\tag{16}$$

where $p = \sum_{c=1}^{C} (z_c - y_c)$, ∇g_a is the gradient of the local model w_i , and ∇A is the gradient of the data augmentation function A.

Then we provide the proof the Theorem 3.1 with Lemma A.1 as follows:

Proof. Based on Lemma A.1, we derive the intra-model inconsistency for any local models trained by existing OFL methods. When $\nabla g_a \neq 0$ and ||A(x) - x|| > 0, $\nabla A \neq 0$, we have:

$$\|\Delta_{intra}\|^{2} = \|(p \cdot \nabla g_{a} \cdot \nabla A)^{T} (x - A(x))\|^{2}$$

= $p^{2} \cdot \|\nabla g_{a}\|^{2} \cdot \|\nabla A\|^{2} \cdot \|(x - A(x))\|^{2}$ (17)

Since |p| > 0, $\|\nabla g_a\|^2 > 0$, $\|\nabla A\|^2 > 0$, and $Vert(x - A(x))\|^2 > 0$, we can induce that $\|\Delta_{intra}\|^2 > 0$.

We finish the proof.

Note that in Theorem 3.1, the $\nabla g_a = 0$ represents the augmented data A(x) is not sensitive to the local model w_i , which is a rare case in practice. If the $\nabla A = 0$, it means the data augmentation function A have fully changed the semantics of the original data x. In conclusion, we can infer that the intra-model inconsistency is inevitable in existing OFL methods.

B. Proof of Theorem 3.2

Proof. We derive the gradient of cross-entropy loss as :

$$\Delta_{w} = \sum_{c}^{C} \left(\nabla (\Phi_{u,c} \theta_{u,c}) - \nabla (\Phi_{v,c} \theta_{v,c}) \right)$$

$$\approx \sum_{c}^{C} \left(\frac{\eta n_{u,c}}{n_{u}} (1 - \overline{z}_{u,c}) \overline{x}_{u,c} - \frac{\eta n_{v,c}}{n_{v}} (1 - \overline{z}_{v,c}) \overline{x}_{v,c} - \left(\frac{\eta}{n_{u}} \sum_{c' \in [C_{u}] \setminus c} n_{u,c'} \overline{z}_{u,c'} \overline{x}_{u,c'} - \frac{\eta}{n_{v}} \sum_{c' \in [C_{v}] \setminus c} n_{v,c'} \overline{z}_{v,c'} \overline{x}_{v,c'} \right) \right)$$
(18)

where the term of \approx holds from the Property 1 in (Zhang et al., 2022b). If $n_u = n_v$, we have

$$\Delta_{w} = \sum_{c}^{C} \{ \frac{\eta}{n_{u}} [\underbrace{(n_{u,c}(1 - \overline{z}_{u,c})\overline{x}_{u,c} - n_{v,c}(1 - \overline{z}_{v,c})\overline{x}_{v,c})}_{\Delta_{w}^{+}} - \underbrace{(\sum_{c' \in [C_{u}] \setminus c} n_{u,c'}\overline{z}_{u,c'}\overline{x}_{u,c'} - \sum_{c' \in [C_{v}] \setminus c} n_{v,c'}\overline{z}_{v,c'}\overline{x}_{v,c'})] \}.$$

$$(19)$$

We consider the $\|\Delta_w\|^2$ under heterogeneous data distribution, and we omit the \sum_c^C for simplicity.

When $\overline{x}_{u,c} \neq \overline{x}_{v,c}$, we have

$$\|\Delta_w\|^2 \ge \frac{\eta^2}{n^2} \left| \|\Delta_w^+\|^2 - \|\Delta_w^-\|^2 \right| > 0.$$
⁽²⁰⁾

When $\overline{x}_{u,c} = \overline{x}_{v,c}, c \in [C_u] \cap [C_v], \overline{z}_{u,c} = \overline{z}_{v,c}$, that is, two clients have same prediction and feature on selected positive class c, then $c' \in [C_u] \setminus \{[C_u] \cap [C_v]\}$, we have

$$\|\Delta_{w}\|^{2} = \frac{\eta^{2}}{n^{2}} \|\Delta_{w}^{-}\|^{2}$$

$$= \frac{\eta^{2}}{n^{2}} \|\sum_{c' \in [C_{u}] \setminus \{[C_{u}] \cap [C_{v}]\}} n_{u,c'} \overline{z}_{u,c'} \overline{x}_{u,c'} - \sum_{c' \in [C_{u}] \setminus \{[C_{u}] \cap [C_{v}]\}} n_{v,c'} \overline{z}_{v,c'} \overline{x}_{v,c'} \|^{2}$$
(21)

⁶⁹⁷ If we assume the equation above equals to zero, we have $\overline{z}_{u,c'}\overline{x}_{u,c'} = \overline{z}_{v,c'}\overline{x}_{v,c'}$, which requires a perfect feature extractor ⁶⁹⁸ for all clients. It is not a practical condition in FL according to (Zhou et al., 2024).

When $\overline{x}_{u,c} = \overline{x}_{v,c}, c \in [C] \setminus \{[C_u] \cup [C_v]\}, n_{u,c} = n_{v,c} = 0$, we have the same formulation with Equ. 21, we can obtain $\|\Delta_w\|^2 > 0$.

When $\overline{x}_{u,c} = \overline{x}_{v,c}, c \in [C_u] \setminus \{[C_u] \cap [C_v]\}, n_{v,c} = 0$, we have

$$\|\Delta_{w}\|^{2} = \frac{\eta^{2}}{n^{2}} \|n_{u,c}(1 - \overline{z}_{u,c})\overline{x}_{u,c} - (\sum_{c' \neq c} n_{u,c'}\overline{z}_{u,c'}\overline{x}_{u,c'} - \sum_{c' \neq c} n_{v,c'}\overline{z}_{v,c'}\overline{x}_{v,c'})\|^{2}$$

$$\approx \frac{\eta^{2}}{n^{2}} \|n_{u,c}\overline{x}_{u,c} - \overline{z}_{u,c}\overline{x}_{u,c}\|$$
(22)

710 where the equality holds if and only if $n_{u,c}(1 - \overline{z}_{u,c})\overline{x}_{u,c} = \Delta_w^-$. In the training phase, it is challenging to maintain this 711 condition between any two clients, so we use the term of \approx since $\overline{z}_{u,c'} \ll \overline{z}_{u,c} < 1$. We say that the $\|\Delta_w\|^2$ is more likely 712 to be positive. The other cases, $c \in [C_v] \setminus \{[C_u] \cap [C_v]\}$ can get the same conclusion.

In summary, we conclude that the $\|\Delta_w\|^2 > 0$ under different heterogeneous scenarios. We finish the proof.

C. Algorithm Details 715 716

Here, we present the detailed algorithm of FAFI. The FAFI consists of two parts. For the client side, the clients perform self-alignment local training for semantically aligned feature extractors and category-wise distinctive prototypes. Then the server aggregates the local prototypes into a global prototype. By dynamically fusing the feature with more information, FAFI makes predictions by computing the similarity between the global prototypes and the fused feature.

Algorithm 1 FAFI

723 **Input:** Number of clients m, number of classes C, number of local epochs E, learning rate η , batch size B, data 724 heterogeneity α . **Output:** Global prototypes \mathcal{P}_q , local models w_i , prediction of test set y_{test}

725

717

718

719

720 721

722

745 746

747 748

757

758 759

760

761

763

764 765

766 767

768

769

726 **Client Side:** 727 for each client $i \in [m]$ in parallel **do** 728 Sample local data \mathcal{D}_i with heterogeneity α . 729 Initialize local feature extractor θ_i and local prototypes \mathcal{P}_i . 730 for each local epoch $e \in [E]$ do 731 Sample a mini-batch \mathcal{B}_i from \mathcal{D}_i . Update local feature extractor θ_i and local learnable prototypes \mathcal{P}_i with self-alignment local training loss: $\mathcal{L} = \mathcal{L}_{ssl}(\theta_i) + \mathcal{L}_{proto}(\mathcal{P}_i, \theta_i)$ 734 end for 735 Send the local feature extractor θ_i and local learnable prototypes \mathcal{P}_i to the server. end for 737 Server Side: Global prototypes aggregation $\mathcal{P}_g = \frac{1}{M} \sum_{m=1}^{M} \mathcal{P}_m$ 738 739 Informative Feature Fusion $\begin{aligned} \alpha_m &= 1 - \cos(\mathcal{F}_m, \mathcal{F}_m^{\mathcal{N}(\mu,\sigma)}) \\ \mathcal{F}_{\text{fused}} &= \sum_m^M \frac{\alpha_m}{\sum_v^M \alpha_v} \mathcal{F}_m \end{aligned}$ 740 741 742 Inference $y_{test} = \arg \max_{c \in [C]} \cos(\mathcal{F}_{fused}, \mathcal{P}_{g,c})$ 743 744

D. More Related Work

D.1. Prototype Learning

749 Prototype refers to the representative feature vector of the instances belonging to a specific class. It is a popular and effective 750 method widely used in various tasks, such as supervised classification tasks and unsupervised learning. Since the prototypes 751 can provide abstract knowledge while preserving data privacy, few works introduce prototypes into federated learning. 752 FedProto (Tan et al., 2022) and FedProc (Mu et al., 2023) aim to achieve a feature-wise alignment with global prototypes. 753 CCVR (Luo et al., 2021) generates virtual features based on approximated Gaussian Mixture Model (GMM). However, 754 existing federated prototype learning methods rely on multi-round interactions between the clients and server, which is not 755 practical in one-shot federated learning. 756

D.2. Contrastive Learning

Contrastive learning (CL) is a promising direction in self-supervised learning. Contrastive learning constructs positive and negative pairs for each training instance and designs various loss functions to contrast positiveness against negativeness, such as InfoNCE (Oord et al., 2018), and SupCon (Khosla et al., 2020). One branch of CL focuses on selecting the informative positive pairs and negative pairs (Chongjian et al., 2023). Another branch investigates the semantic structure and involves clustering methods to construct more representative prototypes (Caron et al., 2020; Li et al., 2021a).

E. Experimental Details

Models and Learning Rate. Following the advanced OFL works (Zeng et al., 2024), we train ResNet-18 on all datasets. We use the SGD optimizer with a momentum coefficient of 0.9, set batch size to 256, and make local train E = 200 steps.

able 4. Impact of different local epochs: in CIFAR-10, CIFAR-100, and Tiny-ImageNe scenarios with skew ratio $\alpha \in$												
$\{0.05, 0.1, 0.3, 0.5\}.$												
Local Epoch F		CIFA	R-10		CIFAR-100			Tiny-ImageNet				
Local Epoch E	$\alpha = 0.05$	$\delta \alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.05$	$\delta \alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$
5	42.34	45.88	54.53	63.76	10.04	13.25	18.28	22.31	10.88	13.68	20.74	23.61
10	52.65	58.25	66.03	73.97	12.73	20.17	27.71	32.43	15.92	21.04	29.88	34.81
50	57.79	63.55	72.21	77.96	15.32	25.83	33.82	39.01	20.36	35.96	36.44	41.16
100	62.08	68.12	76.11	82.03	24.35	31.34	41.48	46.77	23.34	36.96	40.91	46.48
150	69.67	72.53	81.64	86.78	29.17	43.19	49.09	59.38	31.06	40.42	46.39	52.13
200	71.84	77.83	84.76	88.74	31.02	45.48	56.65	61.07	36.96	43.62	53.32	56.48
300	72.33	77.92	85.12	89.23	31.67	46.65	57.12	62.11	37.04	43.14	53.65	57.23
·												

Table 5. Impact of Model Architecture: ResNet-18, ResNet-50, and ViT-base on Tiny-ImageNet.

Architecture	Accuracy(%)	Memory Cost	Computation Cost
ResNet-18	57.23	11.7 M	3.2 min/epoch
ResNet-50	58.12	25.6 M	4.6 min/epoch
ViT-base	58.09	86 M	5.5 min/epoch

We report the best results by varying the learning rate in 0.05, 0.01, 0.001. We adopt the temperature of constrastive learning as $\tau = 0.5$. We use the output of the last layer of ResNet-18 as the feature, and the prototype of each category has the same dimension as the feature. Source code and models will be released.

Federated Settings. For OFL methods (including FAFI), we adopt the same settings with (Zeng et al., 2024; Zhang et al., 2022a). We set the number of clients as 5, and the local training epochs of 200. For multi-round FL methods, we select six representative methods, including FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020) SCAFFOLD (Karimireddy et al., 2020), FedCav (Zeng et al., 2021; 2025), FedProto (Tan et al., 2022), FedDC (Gao et al., 2022). To ensure a fair comparison framework, all multi-round FL methods are evaluated under identical experimental conditions as OFL approaches, including matching client numbers, equivalent heterogeneous data distributions, and consistent local learning rates. We try to adopt the same local training epochs as OFL methods do in multi-round FL. However, this configuration unexpectedly led to performance degradation that persisted at levels comparable to O-FedAvg for extended training rounds. To effectively highlight the advantages of FAFI, we consequently adopt the conventional local epoch setting (E=5), a parameter configuration widely validated in FL literature. Under this optimized configuration, our experimental results demonstrate that conventional multi-round FL methods still require over 80 communication rounds to attain accuracy levels equivalent to those achieved by FAFI.

F. More Experimental Results

Figure 6. Visualization of FAFI with Grad-Cam. The features are consistent with the same semantics.

Impact of Local Epochs. We tested how different numbers of local training rounds affect performance across three datasets. As shown in Table 4, model accuracy keeps improving when we increase the number of training rounds. However, the improvements become very small after 200 rounds - pushing to 300 rounds only brings less than 0.8% better accuracy compared to 200 rounds, but makes the computation much heavier. After comparing how accuracy improves versus how

825 much computing power is needed, we chose 200 rounds as our standard setting.

Impact of Model Architecture. We used ResNet-18 as the default feature extractor in the previous study. In this part, we investigate the impact of different model architectures. We select ResNet-18, ResNet-50, and ViT-base. We compare the memory cost (measured by #parameters), computation cost (measured by the computation time per epoch), and accuracy on Tiny-ImageNet in Table 5. Note that the impact of model architecture on performance is relatively low, but there are significant differences in computational and storage costs. The enhancement in performance is attributed to the designed framework (FAFI), rather than the model.

Visualization. We visualize the features extracted by the local models trained by FAFI in Figure 6. We select one of the local models trained by FAFI and choose some samples for visualization. We found that the features extracted under the same semantics are consistent, which proves the effectiveness of the Self-Alignment Local Training.